
Traditional IT Service Desk is outdated. The advent of technology solutions has enabled organizations to engage in multiple transformation initiatives simultaneously in order to solve a variety of Service Desk challenges. However, technology-driven transformation often fails to translate into a systematic, process-driven and scalable mechanism for Service Management organizations. IT Leaders buy into the marketing hype and promises in solving specific challenges associated with scalable and agile IT Service Desk operations. The solution therefore lies in addressing a variety of constraints as they optimize ITSM operations for business goals.
In this post, we will focus on ticket routing operations within the IT Service Desk domain. Organizations typically model business decisions against three key constraints: Problem Identification, Ticket Distribution and Workforce Assignment. The goal of an autonomous ticket routing technology is to optimize for all three of these key pillars.
The traditional process requires users to classify IT issues under known problem categories. Users are often unaware of the correct categories corresponding to their support requests, which may in fact fall under multiple overlapping support categories. The lack of accurate and precise problem classification makes it further difficult to categorize the support request, compelling users to submit tickets under the Other category, which does little to help reach the right resolution teams promptly.
The scale and variety of support requests and IT issues often makes it challenging to automate the ticket distribution and routing process optimally. Organizations require Service Desk teams to resolve tickets based on business objectives and KPIs such as MTTR and MTTD on issues most impactful toward these goals. As a result, ticket distribution becomes a manual exercise that is detrimental to the overall performance of the Service Desk, despite the availability of traditional automated routing tools.
Load balancing capabilities based on AI technologies can incorporate a variety of KPIs and constraints to ensure optimal ticket distribution. This results in reduced MTTD and MTTR on mission-critical issues and maintaining highly dependable IT services.
Service Desk organizations are not only overwhelmed by the sheer volume of support requests, but also struggle to make optimal use of the skills and knowledge already available to them. Suboptimal ticket routing, lack of skill set mapping between resolution teams and the ability to accumulate and share the acquired knowledge greatly reduces the ability of Service Desk organizations to scale their operational capacity.
AI based skill set mapping technologies bridge the skills gap by routing tickets based on the most relevant and available team members as well as making it easier to identify, extract and share applicable knowledge across the ticket lifecycle.
Modern IT Service Desk must constantly evolve and enhance their ability to meet organizational goals based on the constraints associated with ticket routing, skills availability and their ability to shift left resolution through fast problem resolution. In order to address these limitations, the IT Service Desk needs intelligence embedded into decision making as well as the execution process. Optimizing for all three sides of the autonomous routing triangle therefore becomes an ongoing process based on AI models that continuously learn, adapt and implement decisions based on the new ticketing information.
Cookie | Duration | Description |
---|---|---|
cookielawinfo-checkbox-analytics | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics". |
cookielawinfo-checkbox-functional | 11 months | The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional". |
cookielawinfo-checkbox-necessary | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary". |
cookielawinfo-checkbox-others | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other. |
cookielawinfo-checkbox-performance | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance". |
viewed_cookie_policy | 11 months | The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data. |